- Formulas and calculation
- The first principle of thermodynamics
El ciclo ideal Otto
- Ejemplos prácticos
- Primer ejemplo
- Segundo ejemplo
- Referencias
An isochoric process is any thermodynamic process in which the volume remains constant. These processes are often also called isometric or isovolumetric. In general, a thermodynamic process can occur at constant pressure and is then called isobaric.
When it occurs at constant temperature, in that case it is said to be an isothermal process. If there is no heat exchange between the system and the environment, then it is called adiabatic. On the other hand, when there is a constant volume, the generated process is called isochoric.
In the case of the isochoric process, it can be stated that in these processes the pressure-volume work is zero, since this results from multiplying the pressure by the increase in volume.
Furthermore, in a thermodynamic pressure-volume diagram the isochoric processes are represented in the form of a vertical straight line.
Formulas and calculation
The first principle of thermodynamics
In thermodynamics, work is calculated from the following expression:
W = P ∙ ∆ V
In this expression W is the work measured in Joules, P the pressure measured in Newtons per square meter, and ∆ V is the change or increase in volume measured in cubic meters.
Likewise, the so-called first principle of thermodynamics establishes that:
∆ U = Q - W
In this formula, W is the work done by the system or on the system, Q is the heat received or emitted by the system, and ∆ U is the change in internal energy of the system. This time the three magnitudes are measured in Joules.
Since in an isochoric process the work is null, it turns out that:
∆ U = Q V (since, ∆ V = 0, and therefore W = 0)
In other words, the variation in internal energy of the system is solely due to the exchange of heat between the system and the environment. In this case, the heat transferred is called constant volume heat.
Original text
El ciclo ideal Otto
El ciclo de Otto es un caso ideal del ciclo que utilizan las máquinas de gasolina. Sin embargo, su utilización inicial fue en las máquinas que empleaban gas natural u otro tipo de combustibles en estado gaseoso.
En cualquier caso, el ciclo ideal de Otto es un ejemplo interesante de proceso isocórico. Se produce cuando en un automóvil de combustión interna tiene lugar de forma instantánea la combustión de la mezcla de gasolina y aire.
En ese caso, tiene lugar un aumento de la temperatura y de la presión del gas dentro del cilindro, permaneciendo el volumen constante.
Ejemplos prácticos
Primer ejemplo
Dado un gas (ideal) encerrado en un cilindro provisto de un pistón, indique si los siguientes casos son ejemplos de procesos isocóricos.
– Se realiza un trabajo de 500 J sobre el gas.
En este caso no sería un proceso isocórico porque para realizar un trabajo sobre el gas es necesario comprimirlo, y por tanto, alterar su volumen.
– El gas se expande desplazando horizontalmente el pistón.
Nuevamente no sería un proceso isocórico, dado que la expansión del gas implica una variación de su volumen.
– Se fija el pistón del cilindro para que no se pueda desplazar y se enfría el gas.
En esta ocasión sí que se trataría de un proceso isocórico, puesto que no se daría una variación de volumen.
Segundo ejemplo
Determine la variación de energía interna que experimentará un gas contenido en un recipiente con un volumen de 10 L sometido a 1 atm de presión, si su temperatura se eleva desde 34 ºC hasta 60 ºC en un proceso isocórico, conocido su calor específico molar Cv = 2.5· R (siendo R = 8.31 J/mol·K).
Dado que se trata de un proceso a volumen constante, la variación de energía interna únicamente se producirá como consecuencia del calor suministrado al gas. Este se determina con la siguiente fórmula:
Qv = n ∙ Cv ∙ ∆T
Para poder calcular el calor suministrado, en primer lugar es necesario calcular los moles de gas contenidos en el recipiente. Para ello se hace necesario recurrir a la ecuación de los gases ideales:
P ∙ V = n ∙ R ∙ T
En esta ecuación n es el número de moles, R es una constante cuyo valor es 8,31 J/mol·K, T es la temperatura, P es la presión a la que está sometido el gas medida en atmósferas y T es la temperatura medida en Kelvin.
Se despeja n y se obtiene:
n = R ∙ T / (P ∙ V) = 0, 39 moles
De modo que:
∆ U = QV = n ∙ Cv ∙ ∆T = 0,39 ∙2,5 ∙ 8,31 ∙ 26 = 210,65 J
Referencias
- Resnik, Halliday & Krane (2002). Física Volumen 1. Cecsa.
- Laider, Keith, J. (1993). Oxford University Press, ed. The World of Physical Chemistry.
- Heat Capacity. (n.d.). In Wikipedia. Recuperado el 28 de marzo, 2018, desde en.wikipedia.org.
- Latent Heat. (n.d.). In Wikipedia. Recuperado el 28 de marzo, 2018, desde en.wikipedia.org.
- Isochoric Process. (n.d.). In Wikipedia. Recuperado el 28 de marzo, 2018, desde en.wikipedia.org.